Reflectometry diagnostics in TCV

Pedro A. Molina Cabrera

Supervisors: Stefano Coda and Laurie Porte Collaborators: A. Smolders, N. Offeddu, P. Lavanchy, M. Silva, M. Toussaint, and the TCV team

Ph.D. event Nov 7-9th 2018

Fast events need faster sensors

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

TCV tokamak at Swiss Plasma Centre

- TCV: Tokamak à Configuration Variable
- $\blacktriangleright \ \mathsf{Ip} < 1\mathsf{MA}$
- ▶ B_{Tor} < 1.54T
- R/a: 0.88/0.25
- \blacktriangleright Shape: κ <2.8, -0.6< δ <0.9
- Electron heating: 4MW
- Neutral-beam heating: 1MW
- Carbon walls
- Open divertor

TCV edge diagnostics

Name	Parameter	dR [cm]	Span $[\psi]$	dt
TS	T _e , n _e	1.5/0.3	0-1	16 ms
CXRS	v_{\perp}, v_{\parallel}	1	v $_{\phi}$ 0-1	60-90 ms
			v_{θ} 0.4-1	
FRP	$T_{e}, n_{e}, \phi_{p}, v_{id}$	0.2	> 1(SOL)	50-2 μ s
SXR	$T_e > 1 \mathrm{keV}$	2.5	0-1*	10 μ s
(C)ECE	$T_{e},\deltaT_{e}(k_{ ho})$	2	0-1*	100-1 μ s
TPCI	$\delta n_e (k_{ ho})$	0.25	0-1*	100-0.6 μ s
REF	$n_e, \delta n_e(k_\rho)$	$f(\lambda)$ 4-8 mm	0**-1	$<\!2~\mu$ s
DBS	$ \delta n_e $ (k _⊥), S(k_{\perp}), v _⊥	$f(\lambda)$ 4-8 mm	0**-1	$<\!\!1$ ms

Reflectometry? Reflect from cut-offs

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Doppler backscattering principles

Bragg condition:
 k = -2k_i
 k = 2k_osin(θ_t)

• Doppler shift
$$\rightarrow u_{\perp}(f(r))$$

TCV's DBS hardware

Antenna: quasi-optical diagnostic launcher

(日)、

э

Sample multiple points at once: multifrequency DBS

New approach to multi-freq DBS

In-shot polarization rotation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

B-field line pitch measurement: optimum coupling X-mode

Expected 81.7 \pm 0.4°. Peak coupling at 1.02 \pm 0.01[s] where $\alpha = 84.5\pm3^{\circ}$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Short pulse reflectometry - $n_e(\rho)$

- Pulse time of flight $\tau_g = d\phi/d\omega$
- $\tau_g(f) \rightarrow \text{Abel}$ inversion $\rightarrow n(r)$
- ▶ 2.5mm error \rightarrow **17ps**
- CWFM 1.25 μ s/profile \rightarrow 16MHz

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Traditional short-pulse REF

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

SPR Hardware Set-up

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへぐ

Timing circuit approaches

Direct Sampling

Analog CFD+TAC

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

Raw group-delay histograms

JAC.

Density fluctuations: sawteeth and quasi-coherent modes

596

Density profiles: ×1000 more data!

▲ロト▲圖ト▲画ト▲画ト 画 のべつ

Current status: validate average profiles

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q ()~.

Future: L-H transition and ELM dynamics

▲ロト▲圖ト▲画ト▲画ト 画 のべつ